首页 | 本学科首页   官方微博 | 高级检索  
     


Two‐Dimensional Mott Insulators in SrVO3 Ultrathin Films
Authors:Man Gu  Stuart A Wolf  Jiwei Lu
Abstract:Strongly correlated oxides that undergo a metal‐insulator transition (MIT) are a subject of great current interest for their potential application to future electronics as switches and sensors. Recent advances in thin film technology have opened up new avenues to tailor MIT for novel devices beyond conventional CMOS scaling. Here, dimensional‐crossover‐driven MITs are demonstrated in high‐quality epitaxial SrVO3 (SVO) thin films grown by a pulsed electron‐beam deposition technique. Thick SVO films (∼25 nm) exhibit metallic behavior with the electrical resistivity following the T2 law corresponding to a Fermi liquid system. A temperature driven MIT is induced in SVO ultrathin films with thicknesses below 6.5 nm. The transition temperature TMIT is at 50 K for the 6.5 nm film, 120 K for the 5.7 nm film and 205 K for the 3 nm film. The emergence of the observed MIT can be attributed to the dimensional crossover from a three‐dimensional metal to a two‐dimensional Mott insulator, as the resulting reduction in the effective bandwidth W opens a band gap at the Fermi level. The magneto‐transport study of the SVO ultrathin films also confirm the observed MIT is due to the electron‐electron interactions other than disorder‐induced localization.
Keywords:SrVO3  thin film  electrical transport  metal‐insulator transition  Mott insulator
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号