首页 | 本学科首页   官方微博 | 高级检索  
     


Refinement of protein cores and protein-peptide interfaces using a potential scaling approach
Authors:Riemann Ralph Nico  Zacharias Martin
Affiliation:International University Bremen, School of Engineering and Science, D-28759 Bremen, Germany.
Abstract:Refinement of side chain conformations in protein model structures and at the interface of predicted protein-protein or protein-peptide complexes is an important step during protein structural modelling and docking. A common approach for side chain prediction is to assume a rigid protein main chain for both docking partners and search for an optimal set of side chain rotamers to optimize the steric fit. However, depending on the target-template similarity in the case of comparative protein modelling and on the accuracy of an initially docked complex, the main chain template structure is only an approximation of a realistic target main chain. An inaccurate rigid main chain conformation can in turn interfere with the prediction of side chain conformations. In the present study, a potential scaling approach (PS-MD) during a molecular dynamics (MD) simulation that also allows the inclusion of explicit solvent has been used to predict side chain conformations on semi-flexible protein main chains. The PS-MD method converges much faster to realistic protein-peptide interface structures or protein core structures than standard MD simulations. Depending on the accuracy of the protein main chain, it also gives significantly better results compared with the standard rotamer search method.
Keywords:molecular dynamics simulation/  peptide–  protein docking/  potential smoothing/  protein design/  side chain prediction
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号