首页 | 本学科首页   官方微博 | 高级检索  
     

基于空间位置约束的稀疏指纹室内定位方法
引用本文:唐恒亮,米 源,刘 涛,薛 菲,杨 玺. 基于空间位置约束的稀疏指纹室内定位方法[J]. 电子测量与仪器学报, 2020, 34(6): 79-85
作者姓名:唐恒亮  米 源  刘 涛  薛 菲  杨 玺
作者单位:1.北京物资学院信息学院
基金项目:国家自然科学基金( 61803035)、北京市“ 高创计划” 青年拔尖个人( 2017000026833ZK25)、北京市通州区运河计划领军人才(YHLB2017038)、北京物资学院基层学术团队建设“北京市智能物流系统协同创新中心”(2019XJJCTD04)资助项目
摘    要:针对基于位置服务的实际应用需求,分析了现有室内定位技术的局限性,提出一种基于空间位置约束的稀疏指纹定位方法,在数据层有效融合惯导和无线局域网(WLAN)定位信息,充分发挥二者优势协同完成定位任务。首先利用WLAN提供的接收信号强度(RSS)信息构建空间位置指纹数据库,并基于RSS构建稀疏指纹表征与定位模型;鉴于RSS数据易受环境干扰呈现多变性,利用惯导技术对位移状态进行初步估计,并以此作为约束条件构建基于空间位置约束的稀疏指纹定位模型。仿真实验结果表明,所提方法较惯导和稀疏指纹方法在定位精度方面分别提升58%和33%。

关 键 词:室内定位  接收信号强度  稀疏指纹  空间位置约束

Sparse fingerprint indoor localization based on spatial position constraint
Tang Hengliang,Mi Yuan,Liu Tao,Xue Fei,Yang Xi. Sparse fingerprint indoor localization based on spatial position constraint[J]. Journal of Electronic Measurement and Instrument, 2020, 34(6): 79-85
Authors:Tang Hengliang  Mi Yuan  Liu Tao  Xue Fei  Yang Xi
Affiliation:1.School of Information, Beijing Wuzi University
Abstract:For the practical application requirements of location-based services, a sparse fingerprint localization method based on spatialposition constraint is proposed, after fully analyzing the limitations of the existing indoor location technologies. The positioninginformation from inertial navigation system (INS) and wireless local area network (WLAN) are deeply integrated on the data level, tocoordinate the positioning task. Based on the received signal strength (RSS) data provided by WLAN, the spatial-location-fingerprintdatabase is constructed, together with the sparse fingerprint representation and location model. In view of the RSS variability due toenvironmental interferences, the displacement state can be preliminarily estimated by INS, which will be as a constraint condition toconstruct the sparse fingerprint location model based on spatial position constraint. The simulation experimental results show that thepositioning accuracy of this method is improved by 58% and 33% respectively, compared with the INS and sparse fingerprint methods. Itis demonstrated that the proposed model can appropriately compensate the accumulative error of INS, and the motion prediction by INSalso can restrict the jumping and distortion effects of RSS signals to a certain extent.
Keywords:indoor localization   received signal strength   sparse fingerprint   spatial position constraint
本文献已被 CNKI 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号