首页 | 本学科首页   官方微博 | 高级检索  
     


Trisilanolphenyl-POSS nano-hybrid poly(biphenyl dianhydride-<Emphasis Type="Italic">p</Emphasis>-phenylenediamine) polyimide composite films: miscibility and structure-property relationship
Authors:Yan Zhang  Jingang Liu  Xiao Wu  Chenyu Guo  Lingqiao Qu  Xiumin Zhang
Affiliation:1.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,China University of Geosciences,Beijing,China;2.School of Electrical Engineering,Beijing Jiaotong University,Beijing,China
Abstract:A partially condensed polyhedral oligomeric silsesquioxane (POSS) compound, trisilanolphenyl-POSS (TSP-POSS) was prepared via a modified two-step procedure with phenyltrichlorosilane as the starting material. The solubility of the TSP-POSS in polyimide (PI) solvents, including N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc) was first evaluated. TSP-POSS could be dissolved in the test solvents with a solid concentration higher than 50 wt% and the obtained solution was stable both at room temperatures and in refrigerator at -18 °C for more than 1 month. TSP-POSS was then physically blended with a poly(amic acid) (PAA) obtained from 3,3′,4,4′-biphenyltetracarboxylic acid dianhydride (BPDA) and para-phenylenediamine (PDA) with various adding proportions of 0, 5, 10, 15, 20, and 25 wt% (TSP-POSS in total solids). The obtained clear and homogeneous PAA/TSP-POSS solution was then thermally imidized at elevated temperatures to afford six PI/TSP-POSS composite films (PI-BP-0~PI-BP-25). For comparison, analogous composite films were prepared by blending TSP-POSS with another PI matrix, poly(pyromellitic anhydride-oxydianiline) (PIPMDA-ODA) at the same hybrid proportion (PI-0~PI-25). TSP-POSS exhibited quite different miscibility with these two PI matrixes. All of the composite films based on PIPMDA-ODA and TSP-POSS showed homogeneous nature and the films were optically transparent even at the high POSS loading of 25 wt%; however, the PIBPDA-PDA analogues showed poor compatibility with the POSS additive when the adding proportion was over 10 wt%. PI-BP-20 and PI-BP-25 films were thoroughly opaque with the haze values of 100%. In addition, the residual weight ratio of the composite films at 760 °C in nitrogen increased from 62.0 wt% (PI-BP-0) to 74.1 wt% (PI-BP-25).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号