首页 | 本学科首页   官方微博 | 高级检索  
     

狼群优化LVQ神经网络的齿轮箱故障诊断应用研究
引用本文:朱振杰,周梅. 狼群优化LVQ神经网络的齿轮箱故障诊断应用研究[J]. 机床与液压, 2020, 48(12): 125-130. DOI: 10.3969/j.issn.1001-3881.2020.12.018
作者姓名:朱振杰  周梅
作者单位:山东大学机械工程学院,高效洁净机械制造教育部重点实验室,机械工程国家级实验教学示范中心,济南 250061;山东建筑大学工程训练中心,济南250101
基金项目:山东省重点研发计划资助项目(2015GGX103026);教育部协同育人资助项目(201702061007)
摘    要:为了提高齿轮箱故障诊断的准确度,采用LVQ神经网络来完成齿轮箱故障定位及识别,并借助狼群优化算法来实现模型参数的优化。在齿轮箱故障诊断的建模过程中,引入狼群优化算法,将LVQ神经网络权重和阈值作为狼群个体,随机产生的多个权重和阈值组合个体构成狼群,并根据狼群游走、召唤和围攻等行为,不断更新狼群中个体狼的位置来获取全局适应度最大的头狼,得到最优权重和阈值,确定最优齿轮箱故障诊断模型。经过实验证明:采用基于狼群优化LVQ神经网络的齿轮箱故障分类,分类准确度更高。

关 键 词:齿轮轴故障  狼群优化  LVQ神经网络  胜出神经元  适应度

Application of gearbox fault diagnosis by LVQ neural network optimized by wolves
Zhen-jie ZHU,Mei ZHOU. Application of gearbox fault diagnosis by LVQ neural network optimized by wolves[J]. Machine Tool & Hydraulics, 2020, 48(12): 125-130. DOI: 10.3969/j.issn.1001-3881.2020.12.018
Authors:Zhen-jie ZHU  Mei ZHOU
Affiliation:(Key Laboratory of High-efficiency and Clean Mechanical Manufacture of MOE,National Demonstration Center for Experimental Mechanical Engineering Education,School of Mechanical Engineering,Shandong University,Jinan 250061,China;Engineering Training Center,Shandong Jianzhu University,Jinan 250101,China)
Abstract:In order to improve the accuracy of gearbox fault diagnosis, LVQ neural network is used to complete the gearbox fault location and identification, and the wolf pack optimization algorithm is used to optimize the model parameters. In the process of gearbox fault diagnosis, a wolf pack optimization algorithm is introduced. The LVQ neural network weights and thresholds are used as wolves. Individuals with multiple randomly generated weights and thresholds are combined to form wolves. According to the behaviors of wolves swimming, beckoning, and siege, the positions of individual wolves in the wolves are continuously updated to obtain the head wolf with the highest global fitness, in order to achieve the optimal weight and threshold, and determine the optimal gearbox fault diagnosis model. It is proved by experiments that the gearbox fault classification based on wolf pack optimization LVQ neural network has higher classification accuracy.
Keywords:Gear shaft failure   Wolf swarm optimization   LVQ neural network   Winning neuron   Fitness
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《机床与液压》浏览原始摘要信息
点击此处可从《机床与液压》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号