首页 | 本学科首页   官方微博 | 高级检索  
     

氢渗透传感器及其在海洋腐蚀环境中的应用
引用本文:许勇,黄彦良,路东柱,王秀通.氢渗透传感器及其在海洋腐蚀环境中的应用[J].表面技术,2020,49(8):22-28.
作者姓名:许勇  黄彦良  路东柱  王秀通
作者单位:1.中国科学院海洋研究所,山东 青岛 266071;2.青岛海洋科学与技术国家实验室 海洋腐蚀与防护开放工作室,山东 青岛,266237;3.中国科学院大学,北京 100049;4.中国科学院海洋大科学研究中心,山东 青岛266071;1.中国科学院海洋研究所,山东 青岛 266071;2.青岛海洋科学与技术国家实验室 海洋腐蚀与防护开放工作室,山东 青岛,266237;4.中国科学院海洋大科学研究中心,山东 青岛266071
基金项目:国家自然科学基金(41976033)
摘    要:目的探究电化学氢渗透传感器在海洋腐蚀环境中的适用性以及相应腐蚀环境下高强度钢的氢渗透行为。方法设计和制作系列氢渗透传感器,将氢渗透传感器置于海洋大气腐蚀环境、模拟浪花飞溅区腐蚀环境和模拟海洋潮差区腐蚀环境,通过电化学氢渗透技术反映自然腐蚀条件下由腐蚀导致的氢向AISI 4135高强钢材料的渗透情况。结合各腐蚀环境下影响材料腐蚀速率的因素,分析各腐蚀环境下氢产生的机理。结果海洋大气腐蚀环境下由腐蚀引起的材料的氢渗透电流密度处在一个较小的数量级,氢渗透电流的大小与大气的绝对湿度呈正比例关系;模拟浪花飞溅区腐蚀环境下,氢渗透电流的大小与模拟浪花飞溅效应的海水喷淋间隔时间相关,相较于海水喷淋间隔为1 min条件下的氢渗透电流密度,喷淋间隔为10 min条件下的氢渗透电流密度的最大值更大。处于模拟海洋潮差区腐蚀的材料的氢渗透电流呈现周期性波动,并且前期氢渗透电流的波动幅值较大,而后趋于稳定。结论电化学氢渗透传感器在检测大气腐蚀环境和模拟浪花飞溅、模拟海洋潮差环境下由腐蚀引起的氢渗透电流的应用中,展现了良好的稳定性和可靠性,表明了相应试验海洋腐蚀环境下氢渗透电流的特点,不同腐蚀环境下材料的氢渗透行为差异较大。

关 键 词:氢渗透传感器  氢渗透电流  海洋大气腐蚀  海洋浪花飞溅区腐蚀  海洋潮差区腐蚀  高强度钢
收稿时间:2020/6/8 0:00:00
修稿时间:2020/8/20 0:00:00

Hydrogen Permeation Sensors and Their Application in the Marine Corrosive Environment
XU Yong,HUANG Yan-liang,LU Dong-zhu,WANG Xiu-tong.Hydrogen Permeation Sensors and Their Application in the Marine Corrosive Environment[J].Surface Technology,2020,49(8):22-28.
Authors:XU Yong  HUANG Yan-liang  LU Dong-zhu  WANG Xiu-tong
Affiliation:1.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071,China; 2.Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; 3.University of Chinese Academy of Sciences, Beijing 100049, China; 4.Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;1.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071,China; 2.Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; 4.Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:The work aims to investigate the applicability of the electrochemical hydrogen permeation sensors in marine corrosive environment and the hydrogen permeation behavior of high strength steel. Hydrogen permeation sensors were designed and fabricated and then placed in the corrosive environment of marine atmosphere, simulated marine splash zone and simulated tidal zone, respectively. Electrochemical hydrogen permeation technology was used to show the permeation of hydrogen into the AISI 4135 high strength steel due to corrosion in natural corrosion environment. Combined with the factors influencing the corrosion rate of material, the generation mechanism of hydrogen was investigated. The hydrogen permeation current density of material caused by corrosion in marine atmospheric corrosion environment was in a small magnitude, and the magnitude of it was proportional to the absolute humidity of atmosphere. In the simulated marine splash zone, the magnitude of hydrogen permeation current density was related to the spraying interval of sea water simulating the splash effect, and the maximum value of current density was larger under the condition of spraying interval of 10 min than that under the condition of spraying interval of 1 min. The hydrogen permeation current density exhibited periodic fluctuations in the simulated marine tidal zone, and the fluctuation was larger in the early age, but turned to be stable later. The application of hydrogen permeation current of electrochemical hydrogen permeation sensors caused by corrosion in the marine atmospheric corrosion environment, marine splash zone and marine tidal zone shows good stability and reliability and reflects the characteristics of hydrogen permeation current in different corrosion environments. The hydrogen permeation behavior of materials under different environments is quite different.
Keywords:hydrogen permeation sensor  hydrogen permeation current  marine atmospheric corrosion  marine splash zone corrosion  marine tidal corrosion  high strength steel
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《表面技术》浏览原始摘要信息
点击此处可从《表面技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号