首页 | 本学科首页   官方微博 | 高级检索  
     

基于响应曲面法的钛合金干式车削工艺参数优化
引用本文:黄丙琪,孟建兵,董小娟,张艳梅,胡益忠,栾晓声,徐汝锋. 基于响应曲面法的钛合金干式车削工艺参数优化[J]. 机床与液压, 2020, 48(12): 131-137. DOI: 10.3969/j.issn.1001-3881.2020.12.019
作者姓名:黄丙琪  孟建兵  董小娟  张艳梅  胡益忠  栾晓声  徐汝锋
作者单位:山东理工大学,山东淄博255000;山东理工大学,山东淄博255000;山东理工大学,山东淄博255000;山东理工大学,山东淄博255000;山东理工大学,山东淄博255000;山东理工大学,山东淄博255000;山东理工大学,山东淄博255000
基金项目:山东省自然科学基金项目(ZR2018MEE028)
摘    要:为了提高钛合金干式车削加工质量,采用响应曲面法对主要车削工艺参数进行了优化,以工件表面粗糙度Ra和刀具磨损量VC作为评价指标,设计了切削速度、背吃刀量和进给量三因素的Box-Behnken实验模型。利用方差和拟合残差概率分布分析三因素的显著性及交互作用,并结合实验检验所建表面粗糙度和刀具磨损二阶响应预测模型的有效性。响应曲面法优化后的最佳工艺参数为:切削速度20 m/min、背吃刀量0.1788 mm、进给量0.1 mm/r,此时得到的表面粗糙度和刀具磨损量为1.031μm和155.6μm,与预测值的误差分别为:9.93%和1.58%。结果表明:基于响应曲面法的钛合金干式车削表面粗糙度和刀具磨损量预测模型准确有效。

关 键 词:钛合金  响应曲面法  干式车削  工艺参数优化

Optimization of dry turning process parameters of titanium alloy based on response surface methodology
Bing-qi HUANG,Jian-bing MENG,Xiao-juan DONG,Yan-mei ZHANG,Yi-zhong HU,Xiao-sheng LUAN,Ru-feng XU. Optimization of dry turning process parameters of titanium alloy based on response surface methodology[J]. Machine Tool & Hydraulics, 2020, 48(12): 131-137. DOI: 10.3969/j.issn.1001-3881.2020.12.019
Authors:Bing-qi HUANG  Jian-bing MENG  Xiao-juan DONG  Yan-mei ZHANG  Yi-zhong HU  Xiao-sheng LUAN  Ru-feng XU
Affiliation:(School of Mechanical Engineering,Shandong University of Technology,Zibo 255000,China)
Abstract:In order to improve the dry turning quality of titanium alloy,the response surface methodology was used to optimize the main turning parameters.A Box-Behnken experimental model was developed the cutting speed,cutting depth and feed rate were regarded as the processing parameters,Ra of workpiece surface roughness and VC of tool wear were regarded as evaluation indexes.Variance and fitting residual probability distribution were used to analyze the significance and interaction of three factors.Furthermore,the validity of the second-order response prediction model of surface roughness and tool wear was verified by experiments.The result shows that the optimum cutting speed,cutting depth and feed rate is 20 m/min,0.1788 mm,0.1 mm/r,respectively.The surface roughness and tool wear obtained by cutting with optimized three parameters,is 1.031μm,155.6μm,The errors are 9.93%and 1.58%respectively compared with predicted value.It is proved that the prediction model of surface roughness and tool wear based on response surface methodology(RSM)is accurate and effective.
Keywords:Titanium alloy  Response surface methodology(RSM)   Drying turning   Technological parameter optimization
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《机床与液压》浏览原始摘要信息
点击此处可从《机床与液压》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号