摘 要: | 目标跟踪技术根据视频上下文信息,建立一个跟踪模型对目标的运动状态进行预测,被广泛用于智能视频监控、自动驾驶、机器人导航、人机交互等多个计算机视觉领域。随着深度学习在语音识别,图像分类以及目标检测等领域的巨大成功,越来越多的研究将深度学习框架应用于目标跟踪任务中。介绍了当前单目标跟踪任务的难点和传统的方法,重点分析了当前基于深度学习的单目标跟踪算法的发展现状,从预训练网络+相关滤波算法、基于孪生网络的方法、基于卷积神经网络的方法、基于生成对抗网络的方法以及其他深度学习方法几个方面,分别对当前流行的深度学习目标跟踪算法进行了概述。此外,总结了用于评测单目标跟踪算法性能的代表性数据集,列举了最新的研究成果在不同数据集上的实验结果并分析了当前单目标跟踪领域的问题和趋势。
|