首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of a Parasitic‐Diode‐Triggered Electrostatic Discharge Protection Circuit for 12 V Applications
Authors:Bo Bae Song  Byung Seok Lee  Yil Suk Yang  Yong‐Seo Koo
Abstract:In this paper, an electrostatic discharge (ESD) protection circuit is designed for use as a 12 V power clamp by using a parasitic‐diode‐triggered silicon controlled rectifier. The breakdown voltage and trigger voltage (Vt) of the proposed ESD protection circuit are improved by varying the length between the n‐well and the p‐well, and by adding n+/p+ floating regions. Moreover, the holding voltage (Vh) is improved by using segmented technology. The proposed circuit was fabricated using a 0.18‐μm bipolar‐CMOS‐DMOS process with a width of 100 μm. The electrical characteristics and robustness of the proposed ESD circuit were analyzed using transmission line pulse measurements and an ESD pulse generator. The electrical characteristics of the proposed circuit were also analyzed at high temperature (300 K to 500 K) to verify thermal performance. After optimization, the Vt of the proposed circuit increased from 14 V to 27.8 V, and Vh increased from 5.3 V to 13.6 V. The proposed circuit exhibited good robustness characteristics, enduring human‐body‐model surges at 7.4 kV and machine‐model surges at 450 V.
Keywords:Electrostatic discharge  Holding voltage  Silicon controlled rectifier  Trigger voltage
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号