首页 | 本学科首页   官方微博 | 高级检索  
     


Physiological cost of energy-equivalent noise exposures with a rating level of 85 dB(A):: Hearing threshold shifts associated with energetically negligible continuous and impulse noise
Authors:Hartmut Irle  Johannes M Hesse  Helmut Strasser
Affiliation:

Institute of Production Engineering, Ergonomics Division, University of Siegen, Paul-Bonatz-Str. 9-11, 57068 Siegen, Germany

Abstract:In industry continuous or impulse noise does not occur exclusively; rather it is a combination of both. If low-level continuous noise or impulse noise (below 120 dB) is added to an already existing high-level continuous noise this often numerically causes no essential increase in the rating level. Yet, it cannot be expected that also aural strain of these exposures is always negligible. Therefore, in a cross-over test series, ten male subjects (Ss) were exposed to white noise of 94 dB(A) for 1 h (TS I), energy-equivalent to an 8 h-rating level LArd of 85 dB(A). In a second test series (TS II) the same exposure was combined with 900 energetically negligible 5-ms impulses with a noise level of 113 dB(A) which increased the rating level by only 0.4 dB. The noise exposure of TS I and TS II was followed by an idealized resting phase in a soundproof cabin. In a third test series (TS III) the continuous noise of 94 dB(A) / 1 h was followed by 3 h of white noise at 70 dB(A). Such an additional load increases the LArd by merely 0.1 dB to 85.1 dB(A). In all three test series, the noise-induced temporary threshold shift (TTS2) and its restitution were measured. The continuous noise exposure of 94 dB(A) for 1 h was associated with a TTS2 of around 20 dB which disappeared completely after about 2 h. The additional impulse noise caused a small increase in the TTS2 and a prolongation of the restitution time. The maximum mean temporary threshold shift for the group increased only slightly (from 22.5 to 25.9 dB, which nevertheless can be statistically proven at a significance level of p 0.99). Yet, more importantly, the restitution time increased from 126 to 175 min, i. e. 3 h, which can be statistically proven at a significance level of p0.95. The TTS2-values of TS III did not differ significantly from those resulting from TS I. That was expected as the conditions up to that point in time were identical. But due to the additional subsequent exposure, the mean restitution time increased considerably from 126 min up to 240 min (4 h). The mean total physiological cost represented by the integrated restitution temporary threshold shift (IRTTS) increased in TS II by approximately 40% and in TS III even by 140%.

Relevance to industry

The results of the study show that levels of noise which have no influence on the rating level which traditionally is calculated according to the energy-equivalence principle are often of great importance, as they can lead to considerably prolonged restitution times. Therefore, the purely energy-equivalent determination of the rating level of both impulse noise and low sound levels can lead to an underestimation of latent problems so that over time a reversible TTS can evolve into a permanent threshold shift. The results are also of importance for the acoustic design of break rooms for noise-exposed workers. There should be conditions that allow an undisturbed restitution of hearing.

Keywords:Ergonomics   Acoustic noise   Audition   Statistical methods   Physiology   Hearing risk factor (HRF)   Noise rating level   Integrated restitution temporary threshold shift (IRTTS)   Energy equivalence principle
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号