首页 | 本学科首页   官方微博 | 高级检索  
     


Rheological properties and stability of oil-in-water emulsions containing tapioca maltodextrin in the aqueous phase
Authors:Sunsanee Udomrati  Shinya Ikeda  Shoichi Gohtani
Affiliation:1. Department of Food Science, The United Graduate School of Agricultural Sciences, Ehime University, Ehime, Japan;2. Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand;3. Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
Abstract:The present research focuses on the effect of the concentration and dextrose equivalent (DE) values of tapioca maltodextrin in the aqueous phase on rheological behavior and stability of oil-in-water emulsions prepared with Tween80. The critical flocculation concentrations (CFCs) of oil-in-water emulsions containing tapioca maltodextrin with DE of 16 (DE16), 12 (DE12) and 9 (DE9) were 11%, 9% and 7% (w/w) respectively, as revealed by transmittance measurement. Coalescence was observed as maltodextrin concentration increased above the CFC. The rheological parameters of flow behavior index (n) and consistency index (k) have been well-described by the Herschel–Bulkley model. The relative consistency index (krelative) increased markedly when the concentration of maltodextrin exceeded the CFC because of depleting flocculation. The consistency index (kemulsion) and yield stress (τ0) of emulsions containing tapioca maltodextrin increased with increasing maltodextrin concentration or decreasing DE. The emulsions containing maltodextrin showed Newtonian flow behavior when the maltodextrin concentration was below the CFC. At maltodextrin concentrations above the CFC, emulsions containing maltodextrin exhibited shear thinning behavior. An increase in the maltodextrin concentration resulted in a decrease in the nemulsion until maltodextrin concentration reached 20% (w/w) for DE9, DE12 and 25% (w/w) for DE16. Further increase in the maltodextrin concentration resulted in an increased the nemulsion because of predominant influence of the continuous phase.
Keywords:Coalescence   Critical flocculation concentration   Emulsion   Flocculation   Maltodextrin   Shear thinning behavior
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号