首页 | 本学科首页   官方微博 | 高级检索  
     

自适应变异的果蝇优化算法
引用本文:韩俊英,刘成忠. 自适应变异的果蝇优化算法[J]. 计算机应用研究, 2013, 30(9): 2641-2644
作者姓名:韩俊英  刘成忠
作者单位:甘肃农业大学 信息科学技术学院,兰州,730070
基金项目:甘肃省科技支撑计划资助项目(1011NKCA058); 甘肃省自然科学基金资助项目(1208RJZA133); 甘肃省教育厅科研基金资助项目(1202-04)
摘    要:针对基本果蝇优化算法(FOA)寻优精度不高和易陷入局部最优的缺点, 提出自适应变异的果蝇优化算法(FOAAM)。该算法在运行过程中根据群体适应度方差和当前最优解的大小判断算法陷入局部最优时, 首先将最优果蝇个体复制M个; 然后对复制的最优果蝇个体进行扰动, 按一定的概率P执行高斯变异操作; 最后对变异后的最优果蝇个体进行二次寻优, 从而跳出局部极值而继续优化。对几种经典测试函数的仿真结果表明, FOAAM算法具有更好的全局搜索能力, 在收敛速度、收敛可靠性及收敛精度上均比基本FOA算法有较大的提高。

关 键 词:果蝇优化  自适应  变异  早熟收敛

Fruit fly optimization algorithm with adaptive mutation
HAN Jun-ying,LIU Cheng-zhong. Fruit fly optimization algorithm with adaptive mutation[J]. Application Research of Computers, 2013, 30(9): 2641-2644
Authors:HAN Jun-ying  LIU Cheng-zhong
Affiliation:College of Information Science & Technology, Gansu Agricultural University, Lanzhou 730070, China
Abstract:In order to overcome the problems of low convergence precision and easily relapsing into local extremum in basic fruit fly optimization algorithm(FOA), this paper presented an adaptive mutation fruit fly optimization algorithm(FOAAM). During the evolution, in the condition of basic FOA's trapping in local extremum judging from the population's fitness variance and the current optimal, first, it generated M current optimal replicates. Then, it disturbed replicates by a certain probability P Gauss mutation operator. Finally, it optimized mutated replicates again to jump out of local extremum and continue to optimize. Experimental results show that the new algorithm has the advantages of better global searching ability, speeder convergence and more precise convergence.
Keywords:fruit fly optimization  adaptive  mutation  premature convergence
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号