首页 | 本学科首页   官方微博 | 高级检索  
     


Crystal Phase and Orientation Control in Integrated Ferroelectric CaBi4Ti4O15 Using a Tailored Liquid of Alkoxides
Authors:Kazumi Kato  Desheng Fu  Kiyotaka Tanaka  Kazuyuki Suzuki  Tatsuo Kimura  Kaori Nishizawa  Takeshi Miki
Affiliation:National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan
Abstract:We used a Ca–Bi–Ti complex alkoxide, in which metal–oxygen bonding was confirmed by spectroscopic analysis, to deposit CaBi4Ti4O15 (CBTi144) thin films in various configurations. The phase transition of non-ferroelectric pyrochlore to ferroelectric perovskite in the complex-alkoxy-derived CBTi144 thin films was found to depend on the Pt bottom electrodes. Matching of the atomic arrangement to the Ca–Bi–Ti–O thin films was predominant rather than the strain and crystallinity of the bottom electrode. The thin films crystallized at 650°C on (111)-oriented Pt showed random orientation and ferroelectric P – V hysteresis loops. The endurance property was excellent against a number of switchings. For this reason, CBTi144 thin films would be expected to be excellent for application to ferroelectric random access memories (FeRAM). Polar-axis-oriented CBTi144 films were fabricated on Pt foils using the complex metal alkoxide solution. The 500-nm-thick film had a columnar structure comprising well-developed grains. The a / b -axis orientation of the ferroelectric films is considered to be associated with the preferred orientation of Pt foil. The film showed improved ferro- and piezoelectric properties. The P r, E c, and d 33 values were enhanced to become twice those of CBTi144 thin films with random orientation. These polar-axis-oriented CBTi144 films are eminently useful in devices as Pb-free piezoelectric materials.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号