首页 | 本学科首页   官方微博 | 高级检索  
     


Factors affecting methanol photocatalytic oxidation and catalyst attrition in a fluidized-bed reactor
Authors:Christopher L. Flakker  Darrin S. Muggli  
Affiliation:aDepartment of Chemical Engineering, University of North Dakota, Grand Forks, ND 58202-7101, United States
Abstract:A resolution IV fractional factorial experimental design explored the effects of seven factors on both the methanol photocatalytic oxidation (PCO) rate and the catalyst particle size distribution using a fluidized-bed reactor. The seven factors were as follows: calcination temperature, calcination time, grinding order, particle size, vibration amplitude, carrier gas humidity, and fluidization velocity. Decreasing calcination temperature from 726 to 623 K increased the activity of TiO2/Al2O3 catalysts for methanol PCO. Attrition during fluidization liberated small TiO2 particles from the bulk catalyst and the rate of attrition increased with gas velocity. Attrition was the primary cause of catalyst elutriation and not the presence of fine particles initially present in the bed from catalyst preparation. Increasing humidity caused agglomeration of fine particles, which reduced the amount of catalyst carryover. Removal of fines from the catalyst bed prior to fluidization caused an increase in catalyst attrition until the amount of fines present in the bed was similar to that of a bed in which fines were not removed.
Keywords:Fluidized bed   Photocatalytic oxidation   Attrition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号