首页 | 本学科首页   官方微博 | 高级检索  
     


The use of the heteropoly acids, H3PMo12O40 and H3PW12O40, for the enhanced electrochemical oxidation of methanol for direct methanol fuel cells
Authors:Jack R. Ferrell III  Mei-Chen Kuo  Andrew M. Herring
Affiliation:a Department of Chemical Engineering, Colorado School of Mines, Golden, CO 80401, USA
b Hydrogen and Electricity, Systems and Infrastructure Group, National Renewable Energy Laboratory, Golden, CO 80401, USA
Abstract:Polarization and electrochemical impedance spectroscopy experiments were performed on a direct methanol fuel cell (DMFC) incorporating the heteropoly acids (HPAs) phosphomolybdic acid, H3PMo12O40, (HPMo) or phosphotungstic acid, H3PW12O40, (HPW) in the anode Pt/C catalyst layer. Both HPW-Pt and HPMo-Pt showed higher performance than the Pt control at 30 psig of backpressure and at ambient pressure. Anodic polarizations were also performed, and Tafel slopes were extracted from the data between 0.25 V and 0.5 V. At 30 psig, Tafel slopes of 133 mV/dec, 146 mV/dec, and 161 mV/dec were found for HPW-Pt, HPMo-Pt and the Pt control, respectively. At 0 psig, the Tafel slopes were 172 mV/dec, 178 mV/dec, and 188 mV/dec for HPW-Pt, HPMo-Pt and the Pt control. An equivalent circuit model, which incorporated constant phase elements (CPEs), was used to model the impedance data. From the impedance model it was found that the incorporation of HPAs into the catalyst layer resulted in a reduction in the resistances to charge transfer. This shows that these two heteropoly acids do act as co-catalysts with platinum for methanol electrooxidation.
Keywords:PEM fuel cell   Heteropoly acid   Direct methanol fuel cell   Electrocatalysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号