首页 | 本学科首页   官方微博 | 高级检索  
     


Electrochemical behavior of rhodium(III) in 1-butyl-3-methylimidazolium chloride ionic liquid
Authors:M. Jayakumar
Affiliation:Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
Abstract:Electrochemical behavior of rhodium(III) chloride in 1-butyl-3-methylimidazolium chloride was investigated by various electrochemical transient techniques at glassy carbon working electrode at different temperatures (343-373 K). Cyclic voltammogram of rhodium(III) in bmimCl consisted of a surge in reduction current occurring at a potential of −0.48 V (vs. Pd) is due to the reduction of Rh(III) to metallic rhodium and a very small oxidation wave occurring at −0.1 V. Increase of scan rate increases the peak current and remarkably shifts the cathodic peak potential (View the MathML source) in negative direction indicating the irreversibility of electroreduction of rhodium(III). The diffusion coefficient of rhodium(III) in bmimCl (∼10−9 cm2/s) was determined and the energy of activation (∼25 kJ/mol) was deduced from cyclic voltammograms at various temperatures. The cathodic (τr) and anodic (τo) transition times were measured from chronopotential transients and the ratio τo/τr was found to be 1:7. Electrowinning of rhodium from bmimCl medium results in a deposition of metallic rhodium with lower (20-25%) Faradaic efficiency. A separation factor of rhodium from co-existing noble metal fission product palladium in bmimCl was determined during electrodeposition.
Keywords:Room temperature ionic liquid   Voltammetry   Fission rhodium   1-Butyl-3-methylimidazolium chloride   Electrowinning   Separation factor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号