首页 | 本学科首页   官方微博 | 高级检索  
     


The electrochemical reduction of oxygen on zinc corrosion films in alkaline solutions
Authors:Zs Pilbáth
Affiliation:Department of Physical Chemistry of Eötvös Loránd University, 1518 Budapest, P.O. Box 32, Hungary
Abstract:Kinetics of the O2 reduction has been characterized on Zn corrosion films by Pt/Zn rotating ring-disc electrode (RRDE) and EIS methods. On zinc-oxide films a two-step reduction was identified in various buffer solutions of pH 10.5, while a small quantity of H2O2 intermediate could be detected. On the basis of results obtained from Pt/Zn and Pt/Pt RRDE experiments in solutions containing H2O2, it was further confirmed that the HO2 was reduced to OH through the zinc-oxide corrosion layer. Capacitance data of the zinc-oxide/electrolyte interface calculated from steady-state impedance diagrams measured at various cathodic potentials indicate the presence of a space charge layer of the semi-metallic ZnO. The solid-state reaction mechanism of HO2 disproportion with participation of Zni+ interstitials, oxygen ion vacancies of the non-stoichiometric Zn-oxide, and chemisorbed HO2 is discussed.
Keywords:Zinc-oxide  Oxygen reduction  Rotating ring-disc electrode  EIS spectra  Catalytic hydrogen peroxide decomposition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号