首页 | 本学科首页   官方微博 | 高级检索  
     


Design,optimization and simulation of a low-voltage shunt capacitive RF-MEMS switch
Authors:Li-Ya Ma  Anis Nurashikin Nordin  Norhayati Soin
Affiliation:1.Department of Electrical Engineering,University of Malaya,Kuala Lumpur,Malaysia;2.Department of Electrical and Computer Engineering,International Islamic University Malaysia,Kuala Lumpur,Malaysia
Abstract:This paper presents the design, optimization and simulation of a radio frequency (RF) micro-electromechanical system (MEMS) switch. The capacitive RF-MEMS switch is electrostatically actuated. The structure contains a coplanar waveguide, a big suspended membrane, four folded beams to support the membrane and four straight beams to provide the bias voltage. The switch is designed in standard 0.35 µm complementary metal oxide semiconductor process and has a very low pull-in voltage of 3.04 V. Taguchi method and weighted principal component analysis is employed to optimize the geometric parameters of the beams, in order to obtain a low spring constant, low pull-in voltage, and a robust design. The optimized parameters were obtained as w = 2.5 µm, L1 = 30 µm, L2 = 30 µm and L3 = 65 µm. The mechanical and electrical behaviours of the RF-MEMS switch were simulated by the finite element modeling in software of COMSOL Multiphysics 4.3® and IntelliSuite v8.7®. RF performance of the switch was obtained by simulation results, which are insertion loss of ?5.65 dB and isolation of ?24.38 dB at 40 GHz.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号