首页 | 本学科首页   官方微博 | 高级检索  
     

基于UKF算法的汽车状态估计
引用本文:赵又群,林棻. 基于UKF算法的汽车状态估计[J]. 中国机械工程, 2010, 0(5)
作者姓名:赵又群  林棻
作者单位:南京航空航天大学;
基金项目:国家自然科学基金资助项目(10902049); 国家863高技术研究发展计划资助项目(2008AA11A140)
摘    要:准确实时获取行驶过程中的状态信息是汽车动态控制系统研究的关键问题。将unscented卡尔曼滤波(UKF)算法应用到汽车的状态估计之中,建立了包含时不变统计特性噪声和非线性轮胎的汽车动力学模型,采用具有对称采样策略和比例修正的UKF算法对汽车估计了多个关键状态量。将UKF估计器与常见的EKF估计器进行了比较分析,基于ADAMS/Car的虚拟试验和实车试验验证了UKF在汽车状态估计中的可行性。

关 键 词:汽车动力学  unscented卡尔曼滤波(UKF)  状态估计  虚拟试验  

Vehicle State Estimation Based on Unscented Kalman Filter Algorithm
Zhao Youqun Lin Fen Nanjing University of Aeronautics , Astronautics,Nanjing. Vehicle State Estimation Based on Unscented Kalman Filter Algorithm[J]. China Mechanical Engineering, 2010, 0(5)
Authors:Zhao Youqun Lin Fen Nanjing University of Aeronautics & Astronautics  Nanjing
Affiliation:Zhao Youqun Lin Fen Nanjing University of Aeronautics & Astronautics,Nanjing,210016
Abstract:A critical component of vehicle dynamic control systems is as accurate and real time knowledge of vehicle key states when running on road.UKF algorithm was used in vehicle state estimation.The nonlinear vehicle dynamics system which contained constant noise and nonlinear tire model was established.Several vehicle key states were estimated using UKF with symmetrical sampling strategy and proportional correction.The estimator based on UKF is compared with the estimator based on extended Kalman filter (EKF).Th...
Keywords:vehicle dynamics  unscented Kalman filter(UKF)  state estimation  virtual experiment  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号