Distributed Observer‐based Stabilization of Nonlinear Multi‐agent Systems with Sampled‐data Control |
| |
Authors: | Ying Wan Jinde Cao Ahmed Alsaedi Tasawar Hayat |
| |
Affiliation: | 1. Department of Mathematics, Southeast University, Nanjing, China;2. Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia;3. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia;4. Department of Mathematics, Quaid‐I‐Azam University, Islamabad, Pakistan |
| |
Abstract: | In this paper, the distributed observer‐based stabilization problem of multi‐agent systems under a directed graph is investigated. Distributed observer‐based control protocol with sampled‐data information is proposed. The dynamics of each agent contain a nonlinear part, which is supposed to be general Lipschitz. In order to stabilize the states of the whole network, all the nodes utilize the relative output estimation error at sampling instants and only a small fraction of nodes use the absolute output estimation error additionally. By virtue of the input‐to‐state stability (ISS) property and the Lyapunov stability theory, an algorithm to design the control gain matrix, observer gain matrix, coupling strength as well as the allowable sampling period are derived. The conditions are in the form of LMIs and algebraic inequality, which are simple in form and easy to verify. Some further discussions about the solvability of obtained linear matrix inequalities (LMIs) are also given. Lastly, an example is simulated to further validate the obtained results. |
| |
Keywords: | Distributed observer nonlinear multi‐agent systems sampled‐data control stabilization |
|
|