首页 | 本学科首页   官方微博 | 高级检索  
     


Human submandibular saliva inhibits human immunodeficiency virus type 1 infection by displacing envelope glycoprotein gp120 from the virus
Authors:T Nagashunmugam  D Malamud  C Davis  WR Abrams  HM Friedman
Affiliation:Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake, Sakyo-ku, Kyoto 606-01, Japan.
Abstract:Actin is a highly conserved, ubiquitous cytoskeletal protein, which is essential for multiple cellular functions. Despite its small size (Mr = 42 000), unpolymerized forms of actin, as well as polymerized forms, exist primarily in the cytoplasm, excluded from the nucleus. Although spatial control of actin is crucially important, the molecular mechanisms ensuring the cytoplasmic localization of unpolymerized actin have not been revealed so far. In this paper we report that actin contains two leucine-rich type nuclear export signal (NES) sequences in the middle part of the molecule, which are both shown to be functional. Monomeric actin, when injected into the nucleus, was rapidly exported in a manner which was sensitive to leptomycin B (LMB), a specific inhibitor of NES-dependent nuclear export. LMB treatment of cells prevented nuclear exclusion of endogenous actin, inducing its nuclear accumulation. Furthermore, actin mutants with disrupted NESs accumulated in the nucleus. Expression of these NES-disrupted actin mutants, but not of wild-type actin, induced a decrease in the proliferative potential of the cell. These results reveal a novel molecular mechanism controlling the subcellular distribution of actin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号