首页 | 本学科首页   官方微博 | 高级检索  
     

一种新型非线性收敛因子的灰狼优化算法*
引用本文:王 敏,唐明珠. 一种新型非线性收敛因子的灰狼优化算法*[J]. 计算机应用研究, 2016, 33(12)
作者姓名:王 敏  唐明珠
作者单位:湖南机电职业技术学院 信息工程学院,长沙理工大学 能源与动力工程学院 长沙
基金项目:国家自然科学基金(61403046);湖南省科学技术基金(S2014F1023)
摘    要:针对标准灰狼优化算法在求解复杂工程优化问题时存在求解精度不高和易陷入局部最优的缺点,提出一种新型灰狼优化算法用于求解无约束连续函数优化问题。该算法首先利用反向学习策略产生初始种群个体,为算法全局搜索奠定基础;受粒子群优化算法的启发,提出一种非线性递减收敛因子更新公式,其动态调整以平衡算法的全局搜索能力和局部搜索能力;为避免算法陷入局部最优,对当前最优灰狼个体进行变异操作。对10个测试函数进行仿真实验,结果表明,与标准灰狼优化算法相比,改进灰狼优化算法具有更好的求解精度和更快的收敛速度。

关 键 词:灰狼优化算法   反向学习策略   函数优化   非线性
收稿时间:2016-01-06
修稿时间:2016-03-02

Novel grey wolf optimization algorithm based on nonlinear convergence factor*
Wang Min and Tang Mingzhu. Novel grey wolf optimization algorithm based on nonlinear convergence factor*[J]. Application Research of Computers, 2016, 33(12)
Authors:Wang Min and Tang Mingzhu
Affiliation:Department of Information Engineering,Hunan Mechanical Electrical Polytechnic,School of Energy and Power Engineering,Changsha University of Science Engineering
Abstract:The classical grey wolf optimization (GWO) algorithm has a few disadvantages of low solving precision and high possibility of being trapped in local optimum. A novel grey wolf optimization (NGWO) algorithm is proposed for solving unconstrained optimization problems. In the proposed algorithm, opposition-based learning strategy was used to initiate population, which strengthened the diversity of global searching. Inspired by particle swarm optimization (PSO), we proposed an improved convergence factor update equation, which was based on that the values of parameter are nonlinearly decreased over the course of iterations. The convergence factor was dynamically adjusted to maintain a better balance between global search and local search. Mutation operator was given on the current optimal individual of each generation, thus it could effectively jump out of local minima. Experiments are conducted on a set of 10 unconstrained benchmark functions. Based on the results, the proposed NGWO algorithm shows significantly better performance than the standard GWO algorithm.
Keywords:Grey wolf optimization algorithm   opposition-based learning strategy   function optimization   nonlinear
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号