首页 | 本学科首页   官方微博 | 高级检索  
     


Development of thin film amorphous silicon oxide/microcrystalline silicon double-junction solar cells and their temperature dependence
Authors:K Sriprapha  C PiromjitA Limmanee  J Sritharathikhun
Affiliation:Institute of Solar Energy Technology Development (SOLARTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
Abstract:We have developed thin film silicon double-junction solar cells by using micromorph structure. Wide bandgap hydrogenated amorphous silicon oxide (a-SiO:H) film was used as an absorber layer of top cell in order to obtain solar cells with high open circuit voltage (Voc), which are attractive for the use in high temperature environment. All p, i and n layers were deposited on transparent conductive oxide (TCO) coated glass substrate by a 60 MHz-very-high-frequency plasma enhanced chemical vapor deposition (VHF-PECVD) technique. The p-i-n-p-i-n double-junction solar cells were fabricated by varying the CO2 and H2 flow rate of i top layer in order to obtain the wide bandgap with good quality material, which deposited near the phase boundary between a-SiO:H and hydrogenated microcrystalline silicon oxide (μc-SiO:H), where the high Voc can be expected. The typical a-SiO:H/μc-Si:H solar cell showed the highest initial cell efficiency of 10.5%. The temperature coefficient (TC) of solar cells indicated that the values of TC for conversion efficiency ) of the double-junction solar cells were inversely proportional to the initial Voc, which corresponds to the bandgap of the top cells. The TC for η of typical a-SiO:H/μc-Si:H was −0.32%/ °C, lower than the value of conventional a-Si:H/μc-Si:H solar cell. Both the a-SiO:H/μc-Si:H solar cell and the conventional solar cell showed the same light induced degradation ratio of about 20%. We concluded that the solar cells using wide bandgap a-SiO:H film in the top cells are promising for the use in high temperature regions.
Keywords:Amorphous silicon oxide  Microcrystalline silicon  Tandem cell  Temperature dependence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号