首页 | 本学科首页   官方微博 | 高级检索  
     


Self-intersection elimination in metamorphosis of two-dimensional curves
Authors:Tatiana Samoilov  Gershon Elber
Affiliation:(1) Computer Science Department, Technion, Haifa 32000, Israel E-mail: {tess, gershon}@cs.technion.ac.il, IL
Abstract:H :[0, 1]× 33, where H(t, r) for t=0 and t=1 are two given planar curves C 1(r) and C 2(r). The first t parameter defines the time of fixing the intermediate metamorphosis curve. The locus of H(t, r) coincides with the ruled surface between C 1(r) and C 2(r), but each isoparametric curve of H(t, r) is self-intersection free. The second algorithm suits morphing operations of planar curves. First, it constructs the best correspondence of the relative parameterizations of the initial and final curves. Then it eliminates the remaining self-intersections and flips back the domains that self-intersect.
Keywords::   Computer-aided geometric design  Freeform parametric curves and surfaces  Homotopic curves and surfaces  Matching  Morphing
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号