首页 | 本学科首页   官方微博 | 高级检索  
     

机器学习在网络入侵检测中的应用
作者姓名:朱琨 张琪
作者单位:南京航空航天大学计算机科学与技术学院,南京,211106
摘    要:随着网络的快速发展,网络安全成为计算机网络中一个重要的研究方向。网络攻击日益频繁,传统的安全防护产品存在漏洞, 入侵检测作为信息安全的重要防护手段弥补了防火墙的不足,提供了有效的网络入侵检测措施,保护网络安全。然而传统的入侵检测系统存在许多问题,基于机器学习的入侵检测方法实现了对网络攻击的智能检测,提高了入侵检测的效率,降低了漏报率和误报率。本文首先简要介绍机器学习的部分算法,然后对机器学习算法在网络入侵检测中的应用进行深入的分析,比较各个算法在入侵检测应用中的优势和缺点,最后总结了机器学习的应用前景,为获得性能良好的网络入侵检测和防御系统奠定基础。

关 键 词:机器学习  网络入侵检测  决策树  神经网络  支持向量机
点击此处可从《数据采集与处理》浏览原始摘要信息
点击此处可从《数据采集与处理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号