摘 要: | 针对现有词包模型对目标识别性能的不足,对特征提取、图像表示等方面进行改进以提高目标识别的准确率。首先,以密集提取关键点的方式取代SIFT关键点提取,减少了计算时间并最大程度地描述了图像底层信息。然后采用尺度不变特征变换(Scale-invariant feature transform,
SIFT)描述符和统一模式的局部二值模式(Local binary pattern,LBP)描述符描述关键点周围的形状特征和纹理特征,引入K-Means聚类算法分别生成视觉词典,然后将局部描述符进行近似局部约束线性编码,并进行最大值特征汇聚。分别采用空间金字塔匹配生成具有空间信息的直方图,最后将金字塔直方图相串联,形成特征的图像级融合,并送入SVM进行分类识别。在公共数据库中进行实验,实验结果表明,本文所提方法能取得较高的目标识别准确率。
|