首页 | 本学科首页   官方微博 | 高级检索  
     

基于GA-BP网络模型的煤矿底板突水非线性预测评价
引用本文:杨志磊,孟祥瑞,王向前,王开元. 基于GA-BP网络模型的煤矿底板突水非线性预测评价[J]. 煤矿安全, 2013, 0(2): 36-39
作者姓名:杨志磊  孟祥瑞  王向前  王开元
作者单位:安徽理工大学
基金项目:国家自然科学基金资助项目(51004004);安徽省高校自然科学重点资助项目(KJ2010A081)
摘    要:以非线性预测评价为基础,采用BP神经网络模型,利用遗传算法优化网络初始权值和阈值,建立一个新的煤矿底板突水危险性预测的网络模型,通过收集不同突水矿井的资料,综合考虑多种影响底板突水的因素。运用Matlab编程对网络原始数据进行训练,并对不同工作面底板是否突水及突水量进行预测分析,结果表明,该模型收敛速度快、预测精确度高,且具有较强的泛化能力。

关 键 词:BP神经网络  遗传算法  非线性  底板突水

Nonlinear Prediction and Evaluation of Coal Mine Floor Water Inrush Based on GA-BP Neural Network Model
YANG Zhi-lei,MENG Xiang-rui,WANG Xiang-qian,WANG Kai-yuan. Nonlinear Prediction and Evaluation of Coal Mine Floor Water Inrush Based on GA-BP Neural Network Model[J]. Safety in Coal Mines, 2013, 0(2): 36-39
Authors:YANG Zhi-lei  MENG Xiang-rui  WANG Xiang-qian  WANG Kai-yuan
Affiliation:(Anhui University of Science and Technology,Huainan 232001,China)
Abstract:Based on nonlinear prediction and evaluation,and using the BP neural network model,using genetic algorithms to optimize the network initial weights and thresholds of the network model,a new coal mine inrush water risk prediction is built by collecting different mine water inrush datum and considering a variety of water inrush factors.Using matlab programming to train the network initial datum,and to ananlyze whether the different working face floor inrush water or not and the quantity of water inrush,the results show that the model is fast convergence strong generalization ability,forecast precision.
Keywords:BP neural network  genetic algorithm  nonlinear  floor water inrush
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号