首页 | 本学科首页   官方微博 | 高级检索  
     


Photovoltaic performance of ruthenium complex dye associated with number and position of carboxyl groups on bipyridine ligands
Authors:King-Fu Lin  Jen-Shyang Ni  Chun-Hua Tseng  Chun-Yi Hung  Ken-Yen Liu
Affiliation:1. Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan;2. Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
Abstract:A series of ruthenium complex dyes with different number and position of carboxyl groups on bipyridine ligands, such as Ru(4-carboxyl-4′-methyl-2,2′-bipyridine)(4,4′-dimethyl-2,2′- bipyridine)(NCS)2 (denoted as Ru1A), Ru(4-carboxyl-4′-methyl-2,2′-bipyridine)2(NCS)2 (Ru11A), Ru(4,4′-dicarboxyl-2,2′-bipyridine)(4,4′-dimethyl-2,2′-bipyridine)(NCS)2 (Ru2A), and Ru(4-carboxyl-4′-methyl-2,2′-bipyridine)(4,4′-dicarboxyl-2,2′-bipyridine)(NCS)2 (Ru3A) were synthesized and compared with Ru(4,4′-dicarboxyl-2,2′-bipyridine)2 (NCS)2, commonly known as N3 dye for the adsorption behavior on the TiO2 surface and photovoltaic properties of dye-sensitized solar cells. The experimental results show that the tilt angle of ruthenium dyes on the TiO2 surface which is dependent on the number and position of their carboxyl groups strongly affected the photovoltaic performance.
Keywords:Electronic materials  Monolayers  Interfaces  Adsorption
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号