首页 | 本学科首页   官方微博 | 高级检索  
     

从心理学数据中发现可理解的模式
引用本文:肖新攀,余嘉元,姜远,周志华. 从心理学数据中发现可理解的模式[J]. 计算机科学与探索, 2011, 5(3): 247-255. DOI: 10.3778/j.issn.1673-9418.2011.03.006
作者姓名:肖新攀  余嘉元  姜远  周志华
作者单位:1. 南京大学,计算机软件新技术国家重点实验室,南京,210093
2. 南京师范大学,心理学系,南京,210097
基金项目:国家自然科学基金; 江苏省自然科学基金~~
摘    要:近年来,机器学习技术常被用于分析心理学数据,以期从数据中找出有价值的模式,更好地刻画和调整人们的心理行为。提出采用二次学习风范的规则生成算法,结合规则学习算法的在模式理解性方面的优势和集成学习、支持向量机等高性能算法在泛化性能上的优势,从心理学数据中发现准确且易于理解的模式。实验表明,采用二次学习风范的规则生成算法在泛化性能上显著高于传统的规则生成算法,且在许多情况下,其输出规则的可理解性亦优于传统的规则生成算法。

关 键 词:可理解性  二次学习  规则归纳  数据审计
修稿时间: 

Finding Comprehensible Patterns from Psychology Data
XIAO Xinpan,YU Jiayuan,JIAN Yuan,ZHOU Zhihua. Finding Comprehensible Patterns from Psychology Data[J]. Journal of Frontier of Computer Science and Technology, 2011, 5(3): 247-255. DOI: 10.3778/j.issn.1673-9418.2011.03.006
Authors:XIAO Xinpan  YU Jiayuan  JIAN Yuan  ZHOU Zhihua
Affiliation:1. National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China2. Department of Psychology, Nanjing Normal University, Nanjing 210097, China
Abstract:In recent years, machine learning techniques have been used to analyze psychology data, with the hope of finding comprehensible patterns to depict and adjust psychological behaviors of human beings. This paper proposes twice-learning style rule generation algorithms that combine the comprehensibility of rule-based learning methods and generalization performance of state-of-the-art learning methods like ensembles and support vector machines (SVMs). Experimental results show that outputs produced by twice-learning style algorithms are always much more accurate and in many cases are more comprehensible than those produced by traditional rule induction algorithms.
Keywords:comprehensibility  twice learning  rule induction  data editing
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机科学与探索》浏览原始摘要信息
点击此处可从《计算机科学与探索》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号