首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling exposure close to air pollution sources in naturally ventilated residences: association of turbulent diffusion coefficient with air change rate
Authors:Cheng Kai-Chung  Acevedo-Bolton Viviana  Jiang Ruo-Ting  Klepeis Neil E  Ott Wayne R  Fringer Oliver B  Hildemann Lynn M
Affiliation:Civil & Environmental Engineering Department, Stanford University, Stanford, California 94305, USA. kccheng78@gmail.com
Abstract:For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m2 s?1. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF? tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号