首页 | 本学科首页   官方微博 | 高级检索  
     


Leaching of bornite in acidified ferric chloride solutions
Authors:B. Pesic  F. A. Olson
Affiliation:1. Department of Metallurgical and Mining Engineering, University of Idaho, 83843, Moscow, ID
2. University of Utah, 412 Browning Building, 84112, Salt Lake City, UT
Abstract:In an acidified ferric chloride solution, bornite leaches in two stages of reaction with the first being relatively much more rapid than the second; the first terminates at 28 pct copper dissolution. The first-stage dissolution reaction is electrochemical and is mixed kinetics-controlled; ferric-ion transfer through the solution boundary layer and reduction on the surface to release Cu2+ into solution are both important in controlling the rate. The concentration of labile Cu+ in the bornite lattice governs the potential of the surface reaction, and, once Cu+ is depleted from the original bornite, stage-I reaction ceases. The solid reaction intermediate formed is Cu3FeS4. Minute subcrystallites formed at the latter part of stage I leach topochemically in stage II. This reaction which commences at 28 pct Cu dissolution is characterized by a change in mechanism at about 40 pct copper dissolution, though the overall chemical equation for reaction is unchanged in stage II; cupric and ferrous ions and sulfur as a solid residue are products of reaction. The region 28 to about 40 pct Cu dissolution is designated as a transition period to stage-II reaction. Reaction rate in this period is interpreted as being controlled by reduction of Fe3+ on active product sulfur surface sites, and hence the reaction rate is controlled by the rate of nucleation and growth of sulfur on the Cu3FeS4 intermediate surfaces. Strain in the Cu3FeS4 crystal lattice is released during this period by diffusion from the lattice of Cu+ remaining from the labile copper initially present in the bornite. After about 40 pct Cu dissolution the rate of reaction is controlled by diffusion through the fully formed sulfur layer in an equiaxial geometrically controlled reaction.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号