首页 | 本学科首页   官方微博 | 高级检索  
     


Thermochemical decomposition of hydrogen sulfide with nickel sulfide
Authors:Hiromichi Kiuchi  Kimio Funaki  Tokiaki Tanaka
Affiliation:1. Department of Metallurgical Engineering, Faculty of Engineering, Hokkaido University, 060, Sapporo, Japan
Abstract:In this research, the two-step thermochemical cycle shown below is proposed and experimental studies were made on the cycle. $$\frac{\begin{gathered} {\text{Ni}}_{\text{3}} {\text{S}}_{\text{2}} + {\text{H}}_{\text{2}} {\text{S}} = {\text{3NiS + H}}_{\text{2}} \hfill \\ {\text{3NiS = Ni}}_{\text{3}} {\text{S}}_{\text{2}} {\text{ + 0}}{\text{.5S}}_{\text{2}} {\text{(g)}} \hfill \\ \end{gathered} }{{{\text{H}}_{\text{2}} {\text{S = H}}_{\text{2}} {\text{ + 0}}{\text{.5S}}_{\text{2}} {\text{(g)}}}}$$ In the case where Ni3S2 alone was used without inert additions, nickel sulfide sintered or partly fused due to the melting point depression resulting from the thermal decomposition of formed NiS. Such sintering could be prevented by mixing the nickel sulfide powders with Al2O3 or MoS2. The cyclic reactions were thereby shown to provide a stationary high decomposition rate of H2S. Polysulfides, such as MS2, have previously been employed in this kind of cycle. This research showed that the use of lower sulfides such as Ni3S2 may be regarded as rather promising based on the thermodynamic investigation of the respective reactions composing the cycle. The comparison between the sulfurization reactions of NiS to NiS2 and of Ni3S2 to NiS further showed that the latter was superior to the former with respect to the kinetics and thermodynamical properties of the reaction.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号