首页 | 本学科首页   官方微博 | 高级检索  
     

基于 FastICA-BAS-MCKD 的滚动轴承复合故障特征提取方法
引用本文:朱江艳,马 军,杨创艳,李 祥,刘桂敏. 基于 FastICA-BAS-MCKD 的滚动轴承复合故障特征提取方法[J]. 电子测量与仪器学报, 2021, 35(8): 107-117
作者姓名:朱江艳  马 军  杨创艳  李 祥  刘桂敏
作者单位:昆明理工大学信息工程与自动化学院 昆明650500;云南省人工智能重点实验室 昆明650500;昆明理工大学信息工程与自动化学院 昆明650500;云南省人工智能重点实验室 昆明650500;云南省矿物管道输送过程技术研究中心 昆明650500
基金项目:国家自然科学基金(51765002,61663017)、云南省科技厅科技计划项目(2019FD042)资助
摘    要:针对强背景噪声下轴承复合故障特征难以分离提取的问题,提出了一种基于快速独立成分分析-天牛须-最大相关峭度解卷积算法(FastICA-BAS-MCKD)的滚动轴承复合故障特征提取方法。 首先,引入 FastICA 对滚动轴承多通道故障信号进行盲源分离;其次,利用 BAS 算法同步优化 MCKD 算法的解卷积周期 T、滤波器长度 L 和移位数 M,构建基于 BAS-MCKD 的滚动轴承振动信号自适应分析方法;然后,应用 BAS-MCKD 方法处理分离后的信号,实现分离信号的降噪和特征增强;最后,应用希尔伯特解调方法对 MCKD 处理后的信号进行包络谱分析,实现滚动轴承不同类型故障的识别。 仿真和实测信号的分析结果表明,所提方法能清晰地从复合故障信号中提取出单一故障特征频率,为滚动轴承复合故障特征提取提供了一种有效的解决方案。

关 键 词:复合故障  盲源分离  天牛须算法  最大相关峭度解卷积

Compound fault feature extraction method of rolling bearingbased on FastICA-BAS-MCKD
Zhu Jiangyan,Ma Jun,Yang Chuangyan,Li Xiang,Liu Guimin. Compound fault feature extraction method of rolling bearingbased on FastICA-BAS-MCKD[J]. Journal of Electronic Measurement and Instrument, 2021, 35(8): 107-117
Authors:Zhu Jiangyan  Ma Jun  Yang Chuangyan  Li Xiang  Liu Guimin
Abstract:Aiming at the problem that bearing composite fault features are difficult to be separated and extracted under strong backgroundnoise, a new compound faults diagnosis method is proposed in this paper based on fast independent component analysis ( FastICA),beetle antennae search algorithm ( BAS) and maximum correlated kurtosis deconvolution ( MCKD). Firstly, FastICA method isintroduced for blind separation of rolling bearing multi-channel fault signals. Secondly, the deconvolution period T, filter length L andshift number M of the deconvolution algorithm for MCKD are simultaneously optimized by using BAS. Then an adaptive analysis methodbased on BAS-MCKD for vibration signal of rolling bearing is constructed to achieve noise reduction and feature enhancement of separatedsignals. Finally, the Hilbert demodulation method is used to analyze the envelope spectrum of the signal processed by MCKD to realizethe identification of different types of rolling bearing faults. The analysis results of simulation and measured signals show that theproposed method can clearly extract the single fault characteristic frequency from the composite fault signal, which provides an effectivesolution for the complex fault characteristic extraction of rolling bearing.
Keywords:compound fault   blind source separation   beetle antennae search algorithm   maximum correlated kurtosis deconvolution
本文献已被 万方数据 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号