首页 | 本学科首页   官方微博 | 高级检索  
     


3D Monte-Carlo device simulations using an effective quantum potential including electron-electron interactions
Authors:Clemens Heitzinger  Christian Ringhofer  Shaikh Ahmed  Dragica Vasileska
Affiliation:1. Department of Mathematics, Arizona State University, Tempe, AZ, 85287, USA
2. Department of Electrical Engineering, Arizona State University, Tempe, AZ, 85287, USA
Abstract:Effective quantum potentials describe the physics of quantum-mechanical electron transport in semiconductors more than the classical Coulomb potential. An effective quantum potential was derived previously for the interaction of an electron with a barrier for use in particle-based Monte Carlo semiconductor device simulators. The method is based on a perturbation theory around thermodynamic equilibrium and leads to an effective potential scheme in which the size of the electron depends upon its energy and which is parameter-free. Here we extend the method to electron-electron interactions and show how the effective quantum potential can be evaluated efficiently in the context of many-body problems. The effective quantum potential was used in a three-dimensional Monte-Carlo device simulator for calculating the electron-electron and electron-barrier interactions. Simulation results for an SOI transistor are presented and illustrate how the effective quantum potential changes the characteristics compared to the classical potential.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号