首页 | 本学科首页   官方微博 | 高级检索  
     


Oxide Thermoelectric Materials: A Structure–Property Relationship
Authors:Abanti Nag  V Shubha
Affiliation:1. Materials Science Division, CSIR-National Aerospace Laboratories, Bangalore, 560017, India
Abstract:Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity (ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure–property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron–phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号