首页 | 本学科首页   官方微博 | 高级检索  
     

PHOG特征与聚类特征选择的笑脸识别方法
引用本文:郭礼华,白洋,金连文. PHOG特征与聚类特征选择的笑脸识别方法[J]. 模式识别与人工智能, 2012, 25(1): 23-28
作者姓名:郭礼华  白洋  金连文
作者单位:华南理工大学电子与信息学院广州510640
基金项目:国家自然科学基金,广东省科技计划项目,中央高校业务费基金
摘    要:基于Gabor特征的人脸表情识别系统虽具有良好的识别性能,但特征维数大、分类器复杂度高。因此,文中提出一种基于PHOG特征与聚类线性鉴别分析(CLDA)的笑脸识别方法。PHOG特征的引入在于简化系统的运算复杂度,而CLDA克服传统线性鉴别分析方法的多模态问题。实验结果表明PHOG特征免去Gabor特征在Adaboost耗时的特征选择过程,具有和Gabor特征相当或更优的识别性能,且CLDA在维数降低时,系统的识别率能得到更好保持。

关 键 词:笑脸识别  表情识别  PHOG特征  特征选择  
收稿时间:2010-06-17

Smile Recognition Based on PHOG Feature Extraction and Clustering Feature Selection
GUO Li-Hua , BAI Yang , JIN Lian-Wen. Smile Recognition Based on PHOG Feature Extraction and Clustering Feature Selection[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(1): 23-28
Authors:GUO Li-Hua    BAI Yang    JIN Lian-Wen
Affiliation:School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510660
Abstract:Gabor features are successfully applied to solve the problems of facial expression recognition.However,the dimension of Gabor features is usually too high to be practically applicable.A method based on Pyramid Histogram of Oriented Gradients(PHOG) feature and Clustering Linear Discriminate Analysis(CLDA) is proposed for smile expression recognition.The main merits of the proposed system are that the complexity can be decreased with low-dimension PHOG feature,and the multi-model problem can be overcome by CLDA.The experimental results show that system with PHOG feature achieves competitive or even higher recognition accuracy than with the Gabor feature,but with much lower of computation time cost.Moreover,the performance of CLDA does not be degraded significantly when decreasing the feature dimension.
Keywords:Smile Recognition  Facial Expression Recognition  PHOG Feature  Feature Selection
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号