首页 | 本学科首页   官方微博 | 高级检索  
     

模糊形态学双向联想记忆网络的性质
引用本文:曾水玲,徐蔚鸿,杨静宇. 模糊形态学双向联想记忆网络的性质[J]. 模式识别与人工智能, 2012, 25(1): 54-62
作者姓名:曾水玲  徐蔚鸿  杨静宇
作者单位:1。吉首大学信息科学与工程学院吉首416000
2。南京理工大学计算机科学与技术学院南京210094
3。长沙理工大学计算机与通信工程学院长沙410077
基金项目:国家自然科学基金,湖南省教育厅科研基金青年项目,吉首大学博士基金
摘    要:为模糊形态学双向联想记忆网络(FMBAM)提出一个学习算法。在理论上证明只要存在使给定的模式对集合成为FMBAM的平衡态集合,则该学习算法总能计算出相应的最大连接权矩阵对。该最大连接权矩阵对能使FMBAM对任意输入在一步内就进入平衡态,并且神经网络全局收敛到平衡态。FMBAM的每个平衡态都是Lyapunov稳定的。当训练模式存在摄动时,利用该学习算法训练的FMBAM,对训练模式摄动拥有好的鲁棒性。

关 键 词:模糊形态双向联想记忆网络(FMBAM)  学习算法  稳定性  收敛性  鲁棒性  
收稿时间:2010-01-04

Properties of Fuzzy Morphological Bidirectional Associative Memories
ZENG Shui-Ling , XU Wei-Hong , YANG Jing-Yu. Properties of Fuzzy Morphological Bidirectional Associative Memories[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(1): 54-62
Authors:ZENG Shui-Ling    XU Wei-Hong    YANG Jing-Yu
Affiliation:1.College of Information Science and Engineering,Jishou University,Jishou 416000
2.College of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing 210094
3.College of Computer and Communications Engineering,Changsha University of Science and Technology,Changsha 410077
Abstract:A learning algorithm is proposed for a class of fuzzy morphological bidirectional associative memories(FMBAM).It is proved theoretically that,for any given set of pattern pairs,if existing pairs of connection weight matrices which make the set become a set of the equilibrium states of FMBAM,the proposed learning algorithm can give the maximum of all such pairs of weight matrices.And the learning algorithm ensure that the FMBAM with this maximal pair of connection weight matrices can be convergent to an equilibrium state in one iterative process for any input.Any equilibrium state of FMBAM is Lyapunov stable.FMBAM can converge to equilbrium state for its any input vector.The robustness of FMBAM is good when the learning algorithm is used to train FMBAM and training pattern pairs have perturbations.
Keywords:Fuzzy Morphological Bidirectional Associative Memory(FMBAM)  Learning Algorithm  Stability  Convergence  Robustness
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号