Modeling light scattering from Diesel soot particles |
| |
Authors: | Hull Patricia Shepherd Ian Hunt Arlon |
| |
Affiliation: | Tennessee State University, Nashville, Tennessee 37023, USA. |
| |
Abstract: | The Mie model is widely used to analyze light scattering from particulate aerosols. The Diesel particle scatterometer, for example, determines the size and optical properties of Diesel exhaust particles that are characterized by the measurement of three angle-dependent elements of the Mueller scattering matrix. These elements are then fitted by Mie calculations with a Levenburg-Marquardt optimization program. This approach has achieved good fits for most experimental data. However, in many cases, the predicted complex index of refraction was smaller than that for solid carbon. To understand this result and explain the experimental data, we present an assessment of the Mie model by use of a light-scattering model based on the coupled-dipole approximation. The results indicate that the Mie calculation can be used to determine the largest dimension of irregularly shaped particles at sizes characteristic of Diesel soot and, for particles of known refractive index, tables can be constructed to determine the average porosity of the particles from the predicted index of refraction. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|