首页 | 本学科首页   官方微博 | 高级检索  
     

协调探索和开发能力的改进灰狼优化算法
引用本文:龙文,伍铁斌. 协调探索和开发能力的改进灰狼优化算法[J]. 控制与决策, 2017, 32(10): 1749-1757
作者姓名:龙文  伍铁斌
作者单位:贵州财经大学贵州省经济系统仿真重点实验室,贵阳550025;贵州财经大学数学与统计学院,贵阳550025,湖南人文科技学院能源与机电工程学院,湖南娄底417000
基金项目:国家自然科学基金项目(61463009);商务部与贵州财经大学联合基金项目(2016SWBZD13);贵州省科学技术基金项目(黔科合基础[2016]1022);湖南省自然科学基金项目(2016JJ3079);湖南省教育厅青年基金项目(14B097).
摘    要:提出一种协调探索和开发能力的灰狼优化算法.利用佳点集方法初始化灰狼个体的位置,为全局搜索多样性奠定基础;为协调算法的全局探索和局部开发能力,给出一种基于正切三角函数描述的非线性动态变化控制参数;为加快算法的收敛速度,受粒子群优化算法个体记忆功能的启发,设计一种新的个体位置更新公式.10个标准函数的测试结果表明,改进灰狼优化(IGWO)算法能够有效地协调其对问题搜索空间的探索和开发能力.

关 键 词:灰狼优化算法  探索能力  开发能力  非线性控制参数  佳点集方法

Improved grey wolf optimization algorithm coordinating the ability of exploration and exploitation
LONG Wen and WU Tie-bin. Improved grey wolf optimization algorithm coordinating the ability of exploration and exploitation[J]. Control and Decision, 2017, 32(10): 1749-1757
Authors:LONG Wen and WU Tie-bin
Affiliation:Guizhou Key Laboratory of Economics System Simulation,Guizhou University of Finance and Economics,Guiyang550025,China;School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guiyang550025,China and School of Energy and Electrical Engineering,Hunan University of Humanities Science and Technology,Loudi417000,China
Abstract:An improved grey wolf optimization(IGWO) algorithm is proposed to solve global continuous optimization problems. The good point set method is used to initiate the grey wolves individuals'' position, which strengthens the diversity of initial individuals in the global searching process. A nonlinear strategy based on the tangent trigonometric function for updating the control parameter is given to balance the exploration and exploitation abilities of the proposed algorithm. Inspired by the particle swarm optimization(PSO) algorithm, a new position update equation of individuals by incorporating the information of individual historical best solution into the position update equation is designed to speed up convergence. The experimental results and comparisons with the classical GWO algorithm and other improved GWO algorithms using a set of well-known benchmark test functions show that the proposed IGWO algorithm can balance the exploration and exploitation to the problem''s solution space effectively during evolution.
Keywords:
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号