首页 | 本学科首页   官方微博 | 高级检索  
     

基于双变异模式协同的自适应微分进化算法
引用本文:王世豪,杨红雨,李玉贞,韩松臣,杨波. 基于双变异模式协同的自适应微分进化算法[J]. 控制与决策, 2017, 32(7): 1196-1202
作者姓名:王世豪  杨红雨  李玉贞  韩松臣  杨波
作者单位:四川大学空天科学与工程学院,成都610065;四川大学国家空管自动化系统技术重点实验室,成都610065,四川大学空天科学与工程学院,成都610065;四川大学国家空管自动化系统技术重点实验室,成都610065,上海电器科学研究所,上海200063,四川大学空天科学与工程学院,成都610065;四川大学国家空管自动化系统技术重点实验室,成都610065,四川大学国家空管自动化系统技术重点实验室,成都610065
基金项目:国家自然科学基金项目(71573184);民航科技项目(20150228).
摘    要:针对微分进化算法(DE)易陷入局部最优解、进化后期收敛速度慢、求解精度低等缺点,结合DE/rand/1和DE/best/1两种变异模式分别具有全局探索能力和局部开发能力的优点,引入精英存档策略和控制参数自适应策略,提出一种双变异模式协同自适应微分进化(DMCSaDE)算法.15个典型benchmark测试函数的实验结果表明,DMCSaDE能够有效提高算法的全局探索能力和局部开发能力,避免早熟收敛,大大提高算法的收敛性能和鲁棒性,同时,精英种群的大小对DMCSaDE的优化性能具有明显的影响.

关 键 词:微分进化  全局优化  精英存档  控制参数自适应

Self-adaptive differential evolution algorithm with dual mutation modes collaboration
WANG Shi-hao,YANG Hong-yu,LI Yu-zhen,HAN Song-chen and YANG Bo. Self-adaptive differential evolution algorithm with dual mutation modes collaboration[J]. Control and Decision, 2017, 32(7): 1196-1202
Authors:WANG Shi-hao  YANG Hong-yu  LI Yu-zhen  HAN Song-chen  YANG Bo
Affiliation:School of Aeronautics and Astronautics,Sichuan University,Chengdu 610065,China;National Key Laboratory of Air Traffic Control Automation System Technology,Sichuan University,Chengdu 610065,China,School of Aeronautics and Astronautics,Sichuan University,Chengdu 610065,China;National Key Laboratory of Air Traffic Control Automation System Technology,Sichuan University,Chengdu 610065,China,Shanghai Electrical Apparatus Research Institute,Shanghai 200063,China,School of Aeronautics and Astronautics,Sichuan University,Chengdu 610065,China;National Key Laboratory of Air Traffic Control Automation System Technology,Sichuan University,Chengdu 610065,China and National Key Laboratory of Air Traffic Control Automation System Technology,Sichuan University,Chengdu 610065,China
Abstract:The differential evolution(DE) algorithm has some disadvantages, such as easy to fall into local optimal solutions, slow convergence speed and low convergence precision in the later stage of evolution. By means of combining DE/rand/1 mutation mode with global exploration ability and DE/best/1 mutation mode with local exploitation ability, and introducing the elite archive strategy and control parameters adaptation strategy, a self-adaptive differential evolution with dual mutation modes collaboration(DMCSaDE) is proposed. A total of 15 typical benchmark test functions are used to perform comparative experiments. The experimental results show that DMCSaDE can effectively improve the global exploration ability and local exploitation ability, avoid the premature convergence and greatly improve the convergence performance and robustness. Additionally, the size of elite population has a significant effect on the optimization performance of DMCSaDE.
Keywords:
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号