首页 | 本学科首页   官方微博 | 高级检索  
     


Exploration of Linked Anomalies in Sensor Data for Suspicious Behavior Detection
Authors:Ian Turk  Matthew Sind  Xin''an Zhou  Jun Tao  Chaoli Wang  Qi Liao
Abstract:We present a visual analytics system to understand the operation data of acompany, GAStech, from IEEE VAST Challenge 2016. The data include proximity datarecording the locations and movements of employees, and heating, ventilation, and airconditioning (HVAC) data recording the environmental conditions in the building.Analyzing the data to detect the suspicious behaviors of some disgruntled employees is ofspecial interest. Our system provides coordinated multiple views to visualize the proximitydata and the HVAC data over time. Visual hints and comparisons are designed for users toidentify abnormal patterns and compare them. Furthermore, the system automaticallydetects and correlates the anomalies in the data. We provide use cases to demonstrate theeffectiveness of our system.
Keywords:visual analytics   sensor data   security
点击此处可从《International Journal of Software and Informatics》浏览原始摘要信息
点击此处可从《International Journal of Software and Informatics》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号