首页 | 本学科首页   官方微博 | 高级检索  
     

融合小波变换和改进KFD的人脸识别方法
引用本文:朱冰莲,杨吉祥,许 娜,张 磊. 融合小波变换和改进KFD的人脸识别方法[J]. 光电工程, 2012, 39(3): 94-99
作者姓名:朱冰莲  杨吉祥  许 娜  张 磊
作者单位:朱冰莲:重庆大学 通信工程学院,重庆 400044
杨吉祥:重庆大学 通信工程学院,重庆 400044
许 娜:重庆大学 通信工程学院,重庆 400044
张 磊:重庆大学 通信工程学院,重庆 400044
基金项目:中央高校基本科研业务科研专项(CDJXS10161114)
摘    要:基于核函数的Fisher判别分析(KFD)在人脸识别中通常采用高斯径向基函数做核函数,但核函数中参数的选取对分类效果影响较大。目前参数的选取一般仅凭经验,且该方法在处理大样本时,速度较慢。针对这个问题,本文提出了一种融合小波变换和改进KFD的人脸识别的方法。该方法首先用小波变换降低样本的维数;然后在用KFD进行特征提取时,采用微粒群算法自动获取一个最优参数,增强分类效果;最后用SVM分类器完成特征的识别。实验表明,该方法与传统的KFD相比较,运算时间减少,而且识别率得到提高。

关 键 词:核函数  人脸识别  小波变换  微粒群算法  SVM分类器
收稿时间:2011-07-25

Face Recognition Based on Wavelet Transform and Improved KFD
ZHU Bing-lian,YANG Ji-xiang,XU Na,ZHANG Lei. Face Recognition Based on Wavelet Transform and Improved KFD[J]. Opto-Electronic Engineering, 2012, 39(3): 94-99
Authors:ZHU Bing-lian  YANG Ji-xiang  XU Na  ZHANG Lei
Affiliation:(College of Communication Engineering,Chongqing University,Chongqing 400044,China)
Abstract:Gaussian radial basis function is usually applied as the kernel function of the kernel fisher discriminant analysis (KFD) in face recognition application. However, the parameter σ of the kernel function has a great impact on the classification. At present, the parameter is usually selected based on experience, and the process of KFD costs too much time for dealing with a large number of samples. To solve these problems, a method of face recognition is presented based on wavelet transform and improved KFD. It employs wavelet transform to compress the data of face image. And it applies PSO algorithm to automatically obtain the parameter to enhance the ability of classification when KFD is employed to complete feature extraction. Finally, support vector machine is used for classification. Numerical experimental results show that the method has a better operational efficiency and more accurate recognition rate than the traditional method of KFD.
Keywords:kernel function  face recognition  wavelet transform  PSO algorithm  support vector machine
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号