首页 | 本学科首页   官方微博 | 高级检索  
     


A Preliminary Study on Robot-Assisted Ankle Rehabilitation for the Treatment of Drop Foot
Authors:Mingming Zhang  Jinghui Cao  Sheng Q Xie  Guoli Zhu  Xiangfeng Zeng  Xiaolin Huang  Qun Xu
Affiliation:1.Medical & Rehabilitation Equipment Research Centre,Tongji Zhejiang College,Jiaxing,China;2.Department of Mechanical Engineering,The University of Auckland,Auckland,New Zealand;3.The State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science & Technology,Wuhan,China;4.Rehabilitation Department of Tongji Hospital,Huazhong University of Science & Technology,Wuhan,China;5.School of Electronic and Electrical Engineering,University of Leeds,Leeds,UK
Abstract:This paper involves the use of a compliant ankle rehabilitation robot (CARR) for the treatment of drop foot. The robot has a bio-inspired design by employing four Festo Fluidic muscles (FFMs) that mimic skeletal muscles actuating three rotational degrees of freedom (DOFs). A trajectory tracking controller was developed in joint task space to track the predefined trajectory of the end effector. This controller was achieved by controlling individual FFM length based on inverse kinematics. Three patients with drop foot participated in a preliminary study to evaluate the potential of the CARR for clinical applications. Ankle stretching exercises along ankle dorsiflexion and plantarflexion (DP) were delivered for treating drop foot. All patients gave positive feedback in using this ankle robot for the treatment of drop foot, although some limitations exist. The proposed controller showed satisfactory accuracy in trajectory tracking, with all root mean square deviation (RMSD) values no greater than 0.0335 rad and normalized root mean square deviation (NRMSD) values less than 6.7%. These preliminary findings support the potentials of the CARR for clinical applications. Future work will investigate the effectiveness of the robot for treating drop foot on a large sample of subjects.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号