首页 | 本学科首页   官方微博 | 高级检索  
     


Sb-Mediated Tuning of Growth- and Exciton Dynamics in Entirely Catalyst-Free GaAsSb Nanowires
Authors:Hyowon W Jeong  Akhil Ajay  Haiting Yu  Markus Döblinger  Nitin Mukhundhan  Jonathan J Finley  Gregor Koblmüller
Affiliation:1. Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching bei München, Germany;2. Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
Abstract:Vapor-liquid-solid (VLS) growth is the mainstream method in realizing advanced semiconductor nanowires (NWs), as widely applied to many III-V compounds. It is exclusively explored also for antimony (Sb) compounds, such as the relevant GaAsSb-based NW materials, although morphological inhomogeneities, phase segregation, and limitations in the supersaturation due to Sb strongly inhibit their growth dynamics. Fundamental advances are now reported here via entirely catalyst-free GaAsSb NWs, where particularly the Sb-mediated effects on the NW growth dynamics and physical properties are investigated in this novel growth regime. Remarkably, depending on GaAsSb composition and nature of the growth surface, both surfactant and anti-surfactant action is found, as seen by transitions between growth acceleration and deceleration characteristics. For threshold Sb-contents up to 3–4%, adatom diffusion lengths are increased ≈sevenfold compared to Sb-free GaAs NWs, evidencing the significant surfactant effect. Furthermore, microstructural analysis reveals unique Sb-mediated transitions in compositional structure, as well as substantial reduction in twin defect density, ≈tenfold over only small compositional range (1.5–6% Sb), exhibiting much larger dynamics as found in VLS-type GaAsSb NWs. The effect of such extended twin-free domains is corroborated by ≈threefold increases in exciton lifetime (≈4.5 ns) due to enlarged electron-hole pair separation in these phase-pure NWs.
Keywords:exciton dynamics  GaAsSb nanowires  photoluminescence  rotational twin defects  selective-area molecular beam epitaxy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号