首页 | 本学科首页   官方微博 | 高级检索  
     


Collaborative Design of MgO/FeOx Nanosheets on Titanium: Combining Therapy with Regeneration
Authors:Dongdong Zhang  Ji Tan  Ru Xu  Huihui Du  Juning Xie  Feng Peng  Xuanyong Liu
Affiliation:1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 China;2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 China

School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001 China;3. Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China

Abstract:The repair of bone defects caused by osteosarcoma resection remains a clinical challenge because of the tumor recurrence and bacterial infection. Combining tumor and bacterial therapy with bone regeneration properties in bone implants is a promising strategy for the treatment of osteosarcoma. Here, a layer of MgO/FeOx nanosheet is constructed on the Ti implant to prevent tumor recurrence and bacterial infection, while simultaneously accelerating bone formation. This MgO/FeOx double metal oxide demonstrates good peroxidase activity to catalyze H2O2, which is rich in tumor microenvironment, to form reactive oxygen species (ROS), and shows good photothermal conversion capacity to produce photothermal effect, thus synergistically killing tumor cells and eliminating tumor tissue. In addition, it generates a local alkaline surface microenvironment to inhibit the energy metabolism of bacteria to enhance the photothermal antibacterial effect. Furthermore, benefiting from the generation of a Mg ion-containing alkaline microenvironment, this MgO/FeOx film can promote the osteogenic differentiation of osteoblast and angiogenesis of vascular endothelial cells in vitro as well as accelerated bone formation in vivo. This study proposes a multifunctional platform for integrating tumor and bacterial therapy and bone regeneration, which has good application prospects for the treatment of osteosarcoma.
Keywords:alkaline microenvironments  bone regeneration  chemodynamic therapies  layered double oxides  photothermal therapies
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号