首页 | 本学科首页   官方微博 | 高级检索  
     


Gas Transport Mechanisms through Molecular Thin Carbon Nanomembranes
Authors:Vladislav Stroganov  Daniel Hüger  Christof Neumann  Tabata Noethel  Michael Steinert  Uwe Hübner  Andrey Turchanin
Affiliation:1. Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany;2. Institute of Applied Physics, Friedrich Schiller University Jena, 07743 Jena, Germany;3. Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
Abstract:Molecular thin carbon nanomembranes (CNMs) synthesized by electron irradiation induced cross-linking of aromatic self-assembled monolayers (SAMs) are promising 2D materials for the next generation of filtration technologies. Their unique properties including ultimately low thickness of ≈1 nm, sub-nanometer porosity, mechanical and chemical stability are attractive for the development of innovative filters with low energy consumption, improved selectivity, and robustness. However, the permeation mechanisms through CNMs resulting in, e.g., an ≈1000 times higher fluxes of water in comparison to helium have not been yet understood. Here, a study of the permeation of He, Ne, D2, CO2, Ar, O2 and D2O using mass spectrometry in the temperature range from room temperature to ≈120 °C is studied. As a model system, CNMs made from [1″,4′,1′,1]-terphenyl-4-thiol SAMs are investigated. It is found out that all studied gases experience an activation energy barrier upon the permeation which scales with their kinetic diameters. Moreover, their permeation rates are dependent on the adsorption on the nanomembrane surface. These findings enable to rationalize the permeation mechanisms and establish a model, which paves the way toward the rational design not only of CNMs but also of other organic and inorganic 2D materials for energy-efficient and highly selective filtration applications.
Keywords:2D materials  carbon nanomembranes  permeation mechanisms  separation technologies  nanofiltration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号