首页 | 本学科首页   官方微博 | 高级检索  
     


Structural/Compositional-Tailoring of Nickel Hexacyanoferrate Electrodes for Highly Efficient Capacitive Deionization
Authors:Yang Bao  Jinxin Hao  Shu Zhang  Dechun Zhu  Feihu Li
Affiliation:1. Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044 China;2. NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044 China
Abstract:Prussian blue analogs (PBAs) represent a crucial class of intercalation electrode materials for electrochemical water desalination. It is shown here that structural/compositional tailoring of PBAs, the nickel hexacyanoferrate (NiHCF) electrodes in particular, can efficiently modulate their capacitive deionization (CDI) performance (e.g., desalination capacity, cyclability, selectivity, etc.). Both the desalination capacity and the cyclability of NiHCF electrodes are highly dependent on their structural/compositional features such as crystallinity, morphology, hierarchy, and coatings. It is demonstrated that the CDI cell with hierarchically structured NiHCF nanoframe (NiHCF-NF) electrode exhibits a superior desalination capacity of 121.38 mg g−1, a high charge efficiency of up to 82%, and a large capacity retention of 88% after 40 cycles intercalation/deintercalation. In addition, it is discovered that coating of carbon (C) film over NiHCF can lower its desalination capacity owing to the partial blockage of diffusion openings by the coated C film. Moreover, the hierarchical NiHCF-NF electrode also demonstrates a superior selectivity toward monovalent sodium ions (Na+) over divalent calcium (Ca2+) and magnesim (Mg2+) ions, allowing it to be a promising platform for preferential capturing Na+ ions from brines. Overall, the structural/compositional tailoring strategies would offer a viable option for the rational design of other intercalation electrode materials applied in CDI techniques.
Keywords:electrochemical water desalination  electrosorption  Faradaic electrodes  Prussian blue analog  selectivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号