首页 | 本学科首页   官方微博 | 高级检索  
     


Solar-CO2-to-Syngas Conversion Enabled by Precise Charge Transport Modulation
Authors:Qiao-Ling Mo  Shu-Ran Xu  Jia-Le Li  Xiao-Qiang Shi  Yue Wu  Fang-Xing Xiao
Affiliation:College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province, 350108 China
Abstract:The rational design of the directional charge transfer channel represents an important strategy to finely tune the charge migration and separation in photocatalytic CO2-to-fuel conversion. Despite the progress made in crafting high-performance photocatalysts, developing elegant photosystems with precisely modulated interfacial charge transfer feature remains a grand challenge. Here, a facile one-pot method is developed to achieve in situ self-assembly of Pd nanocrystals (NYs) on the transition metal chalcogenide (TMC) substrate with the aid of a non-conjugated insulating polymer, i.e., branched polyethylenimine (bPEI), for photoreduction of CO2 to syngas (CO/H2). The generic reducing capability of the abundant amine groups grafted on the molecular backbone of bPEI fosters the homogeneous growth of Pd NYs on the TMC framework. Intriguingly, the self-assembled TMCs@bPEI@Pd heterostructure with bi-directional spatial charge transport pathways exhibit significantly boosted photoactivity toward CO2-to-syngas conversion under visible light irradiation, wherein bPEI serves as an efficient hole transfer mediator, and simultaneously Pd NYs act as an electron-withdrawing modulator for accelerating spatially vectorial charge separation. Furthermore, in-depth understanding of the in situ formed intermediates during the CO2 photoreduction process are exquisitely probed. This work provides a quintessential paradigm for in situ construction of multi-component heterojunction photosystem for solar-to-fuel energy conversion.
Keywords:charge transfer  in situ growth of metal nanocrystals  non-conjugated polymers  photocatalytic CO2 reduction  transition metal chalcogenides
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号