首页 | 本学科首页   官方微博 | 高级检索  
     


Secondary Metabolic Profile as a Tool for Distinction and Characterization of Cultivars of Black Pepper (Piper nigrum L.) Cultivated in Pará State,Brazil
Authors:Luccas M Barata  Eloísa H Andrade  Alessandra R Ramos  Oriel F de Lemos  William N Setzer  Kendall G Byler  Jos Guilherme S Maia  Joyce Kelly R da Silva
Abstract:This study evaluated the chemical compositions of the leaves and fruits of eight black pepper cultivars cultivated in Pará State (Amazon, Brazil). Hydrodistillation and gas chromatography–mass spectrometry were employed to extract and analyze the volatile compounds, respectively. Sesquiterpene hydrocarbons were predominant (58.5–90.9%) in the cultivars “Cingapura”, “Equador”, “Guajarina”, “Iaçará”, and “Kottanadan”, and “Bragantina”, “Clonada”, and “Uthirankota” displayed oxygenated sesquiterpenoids (50.6–75.0%). The multivariate statistical analysis applied using volatile composition grouped the samples into four groups: γ-Elemene, curzerene, and δ-elemene (“Equador”/“Guajarina”, I); δ-elemene (“Iaçará”/“Kottanadan”/“Cingapura”, II); elemol (“Clonada”/“Uthirankota”, III) and α-muurolol, bicyclogermacrene, and cubebol (“Bragantina”, IV). The major compounds in all fruit samples were monoterpene hydrocarbons such as α-pinene, β-pinene, and limonene. Among the cultivar leaves, phenolics content (44.75–140.53 mg GAE·g−1 FW), the enzymatic activity of phenylalanine-ammonia lyase (20.19–57.22 µU·mL−1), and carotenoids (0.21–2.31 µg·mL−1) displayed significant variations. Due to black pepper’s susceptibility to Fusarium infection, a molecular docking analysis was carried out on Fusarium protein targets using each cultivar’s volatile components. F. oxysporum endoglucanase was identified as the preferential protein target of the compounds. These results can be used to identify chemical markers related to the susceptibility degree of black pepper cultivars to plant diseases prevalent in Pará State.
Keywords:sesquiterpenes  monoterpenes  phenolic compounds  carotenoids  PAL activity  molecular docking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号