首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于多标签随机森林的固体氧化物燃料电池系统并发故障识别
作者姓名:
许朝雄
宫亮
杨煜普
作者单位:
上海交通大学电子信息与电气工程学院;上海交通大学电子信息与电气工程学院;上海交通大学电子信息与电气工程学院
摘 要:
为了快速准确地识别SOFC系统的并发故障,将多标签技术和机器学习算法相结合,实现了复杂非线性系统中并发故障数据稀少情况下的故障快速识别。研究了多标签随机森林故障识别方法,通过集成多个随机森林,系统地提升了并发故障的识别率。针对并发故障识别的多维标签输出的特殊性,采用F1-Measure准则来评价多维标签识别精度,从而实现对并发故障的识别精度评价。实验结果表明:多标签并发故障识别框架能够在并发故障训练数据稀少的情况下,高效地识别故障样本。
关 键 词:
固体氧化物燃料电池
并发故障识别
多标签
随机森林
F1-Measure
本文献已被
CNKI
万方数据
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号